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Abstract—Many state-of-the-art Segment Routing (SR) Traffic
Engineering (TE) algorithms rely on Linear Program (LP)-based
optimization. However, the poor scalability of the latter and the
resulting high computation times impose severe restrictions on
the practical usability of such approaches for many use cases.
To tackle this problem, a variety of preprocessing approaches
have been proposed that aim to reduce computational complexity
by preemptively limiting the number of SR paths to consider
during optimization. In this paper, we provide the first extensive
literature review of existing preprocessing approaches for SR.
We further conduct a large-scale comparative study of these
approaches using various real-world topologies, including recent
data from a Tier-1 Internet Service Provider (ISP) backbone.
Based on the insights obtained from this evaluation, we finally
propose a combination of multiple preprocessing approaches and
show that applying such a preprocessing prior to optimization can
reduce the number of 2SR paths to consider by as much as 97-
99%, while still achieving close to optimal solutions. We further
demonstrate that this allows to reliably reduce computation times
of different LP-based TE algorithms by around a factor of 10
or more, without resulting in a relevant deterioration of the
solution quality. This is a major improvement over the current
state-of-the-art and facilitates the reliable usability of LP-based
optimization for large segment-routed networks.

Index Terms—traffic engineering, segment routing, optimiza-
tion, performance

I. INTRODUCTION

Segment Routing (SR) has become a premier choice for
Traffic Engineering (TE) purposes in large networks. It of-
fers great traffic steering capabilities while simultaneously
offering good scalability. However, in order to use SR to its
full potential, optimization algorithms are needed to compute
the best possible TE configurations. In many state-of-the-art
approaches (e.g., [1], [2], or [20]), this is done using Lin-
ear Program (LP)-based optimization because it can provide
guaranteed optimal solutions. Its major drawback, however,
is its limited scalability and the resulting high computation
times for larger networks. Depending on the algorithm and
the size of the network, those can reach up to multiple hours
or even days. For certain use cases, this is acceptable but, for
many scenarios, such high computation times severely limit
the practical usability of LP-based SR TE algorithms.

Over the recent years, a variety of preprocessing approaches
have been proposed that aim to reduce the problem complexity

and, thus, the resulting computation time by preemptively lim-
iting the number of SR paths to consider during optimization.
While the individually reported results for those approaches
look promising, evaluations are often carried out on a rather
limited set of data and varying hardware. This raises questions
regarding the generalizability of the results and makes it
virtually impossible (i.e. for operators) to compare approaches
against each other to select the best fitting one.

To address these problems, we provide an extensive lit-
erature review and discussion of existing preprocessing ap-
proaches to then carry out a large comparative study regarding
their performance. For this, we not only use various publicly
available topologies from the Repetita dataset [11] but also
recent network data from the backbone of a globally operat-
ing Tier-1 Internet Service Provider (ISP). Finally, based on
insights gained from this evaluation, we propose a combination
of multiple preprocessing approaches and show that this leads
to a significant improvement in performance. It allows for a
reduction of computation times by a factor of 10 or more
without a practically relevant deterioration in solution quality.
This is a major improvement over the current state-of-the-art
and an important step towards the reliable usability of LP-
based SR TE for large networks.

The remainder of this paper is structured as follows. First,
a general introduction to the topic of SR is given in Sec-
tion II, followed by a literature review and on existing SR
preprocessing approaches (Section III). After this, Section IV
describes our evaluation setup, focusing on the used datasets
and considered algorithms. The results of the respective evalu-
ation are presented and discussed in Section V. Our approach
for a combined preprocessing in proposed and evaluated in
Section VI, followed by a discussion of possible limitations
of our study (Section VII). Finally, the paper is concluded
in Section VIII with a recapitulation on its most important
contributions and findings and an outlook on possible future
research directions.

II. AN INTRODUCTION TO SEGMENT ROUTING

SR [9] is a network tunneling technique that implements the
source routing paradigm. Its key feature is the possibility to
add specific labels (also called segments) to a packet, which
function as waypoints that the packet has to visit in a given
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Problem 1: 2SR formulation (inspired by [1]).

order before heading to its original destination. Depending
on the nature of the related waypoint, different segment-types
are used. For example, node segments refer to routers, while
adjacency segments identify individual links. The forwarding
paths between the waypoints are determined by the Interior
Gateway Protocol (IGP) of the respective network. Overall,
SR enables the definition of virtually arbitrary forwarding
paths and allows for a precise, per-flow traffic control. For
this reason, SR has become one of the premier choices for TE
and there is a large body of work regarding SR in general and
its applications for TE in particular (cf. e.g., [27]).

One of the fundamental works in the SR TE landscape
is [1]. Here, the authors propose an LP-based optimization
model that builds the foundation for many subsequent works.
With it, they show that even SR with just two node segments
(2SR) already enables virtually optimal TE solutions in many
scenarios. A slightly adapted version of the respective 2SR
LP formulation is shown in Problem 1. The objective is to
minimize the Maximum Link Utilization (MLU) denoted by θ.
The variables xkij indicate the percentage share of the demand
tij between nodes i and j, that is routed over the intermediate
segment k. Equation (2) ensures that each demand is satisfied.
Equation (3), is the so called capacity constraint. For every
edge e, gkij(e) indicates the load that is put on e if a uniform
demand is routed from i to j over the intermediate segment k.
These values are constants and can be efficiently precomputed.
All in all, the left side of the constraint denotes the traffic
that is put on e by the SR configuration represented by the
xkij . This is then limited to the edges capacity c(e) scaled by
θ. By minimizing this scaling factor, a SR configuration with
minimal MLU is computed. The only difference to the original
LP of [1] is that there the xkij variables were continuous,
allowing for demands to be split arbitrarily across various
SR paths. However, such an arbitrary splitting is not feasible
in practice [20]. Therefore, newer variations of the 2SR LP
generally prohibit splitting demands over multiple SR paths
by making the xkij binary variables (cf. e.g., [7] or [20]).

A recent innovation in the SR landscape is the Midpoint
Optimization (MO) concept [2], [6]. Demands no longer have
to be optimized individually by deploying dedicated end-to-
end SR tunnels. Instead, a single SR tunnel can be used to
detour a whole set of demands. MO allows for a substantial
reduction of the number of SR tunnels that need to be deployed
to implement TE solutions, lowering the configuration effort
and overhead in the network. However, the underlying opti-

mization problem becomes inherently more complex, resulting
in substantially higher computation times.

III. PREPROCESSING APPROACHES FOR LP-BASED
SEGMENT ROUTING OPTIMIZATION

A major challenge in the context of SR TE is the scal-
ability of the used optimization algorithms. While LP-based
approaches offer the major advantage of providing provable
optimal solutions, they scale rather poorly with network size.
For small to medium sized networks, this is no issue since
solutions can still be computed within seconds or at most
minutes. However, for large networks (e.g., WANs or ISP
backbones), computing TE solutions with LPs can take mul-
tiple hours or more (cf. [20]), while, in practice, solutions
might be needed on a timescale of just a few minutes (cf.
[12], [13]). There are different ways to approach these issues.
Some focus on the use of advanced mathematical concepts like
column generation [15] or constraint programming [12], while
others try to deploy meta-heuristics to compute reasonable
good solutions within really short timespans (e.g., [3] or [10]).

A completely different approach to bring down the com-
plexity and, hence, computation time of SR LPs focuses
on preprocessing the set of SR paths to consider during
optimization. Each SR path basically consists of the source and
destination node of the packet as well as a set of middlepoints1

(the node segments) that it has to visit (cf. Section II).
In basically all SR LP formulations (e.g., in Problem 1),
the model allows for every node segment to be used as a
middlepoint for each traffic demand (aka. source-destination
pair). While this guarantees optimality, it also is responsible
for a large portion of the overall problem complexity. For every
demand the optimization has |V |k−1 paths to choose from,
resulting in a total number of O(|V |k+1) possible SR paths to
evaluate, with |V | being the number of nodes in the network
and k the maximum number of segments per path. Here,
the preprocessing (or also called middlepoint selection [26])
approaches come into play and try to reduce this complexity
by limiting the set of available middlepoints per demand and,
thus, the set of SR paths to consider prior to optimization.
This results in smaller and generally faster to solve LPs.

In the following, we provide a detailed overview on (to the
best of our knowledge) all existing preprocessing approaches
in the SR TE literature.

A. Centrality-based Approaches

One of the first works that came up with the idea of
preemptively limiting the number SR paths that are considered
for optimization are [25], [26]. They only allow a certain
subset of nodes as middlepoints (aka. intermediate segments)
for SR paths and propose to use graph centrality metrics to
select “important” or “central” nodes into this subset. This
idea is evaluated in the context of datacenter networks and
ISP backbones for various subset sizes and with different
centrality measures. It is observed that, out of all considered

1The term “middlepoint” used in the remainder of this paper is not to be
confused with the term “midpoint” from the MO concept (Section II).



centrality metrics, selecting the allowed middlepoints based on
their Group Shortest-Path (GSP) centrality [8] performs best.
For a group of nodes G the GSP centrality is defined as:

Cgsp(G) =
∑

s,t∈V |s,t6∈G

θst(G)
θst

(5)

with θst denoting the total number of shortest paths from s to t
and θst(G) being the number of shortest paths from s to t that
include any node in G [26]. In other words, it characterizes
how “central” a group of nodes is based on the number of
shortest paths that run through this group.

Overall, it is shown that, when focusing on only a small
number of nodes as available middlepoints, computation times
can be substantially reduced. However, this comes at the prices
of a considerable deterioration in solution quality. While the
authors argue that this can be a sensible trade-off to make, in
practice, a deterioration of solution quality is only acceptable
up to a certain point. Furthermore, limiting the available
middlepoints to the same small set of nodes for all demands
can result in severe violations of certain operational latency
constraints (i.e. from service level agreements). For example,
if, for a globe-spanning network, the most “central” nodes are
all located in Europe, intra-US traffic either needs to always
follow its shortest path or be detoured all the way over a node
in Europe, most likely exceeding latency bounds. In addition
to that, if the number of SR paths grows larger and they are
all forced over the same handful of middlepoints, this can put
additional burden on the routing hardware of these nodes.

B. Stretch-Bounding

Another early middlepoint selection approach is the Stretch-
Bounding (SB) concept proposed in [23], [24]. Its key idea
is to rule out all nodes from being a potential middlepoint
for an SR path if they are “too far away” from its source or
destination regarding a given metric. This can be formalized
as only considering middlepoint m for an SR path between
src and dst if the following equation is satisfied:

DIST (src→ m) +DIST (m→ dst)

DIST (src→ dst)
≤ αSB (6)

with the DIST () function denoting the shortest path distance
between the respective two nodes and αSB ∈ [1,∞] being
the so called SB factor. This approach rules out all those SR
paths that are more then α-times longer than the shortest path
between the respective source and destination. It is shown in
[23] that there is a trade-off between speedup and deterioration
of solution quality depending on the chosen α-value. The
authors define a factor of around αSB = 1.4 as the sweetspot
of achieving close to optimal results while still considerably
speeding up computations by a factor of 3 to 4. However,
the SB implementation as described in Equation 6 inherits
an issue that can negatively impact performance in certain
scenarios (first pointed out in [7]). If the initial shortest path
length is small (e.g., for paths with just one or two hops),
small α-values can completely prohibit any kind of detour for
the respective demand. The best example for this is a simple

hop-count metric. If the shortest path of a demand has length
1 (one hop), this means that for all α < 2, there are no detours
available for this demand as every detour would have at least
length two. This can negatively impact the achievable MLU.

A rather similar concept to the SB approach of [24] was also
proposed in [21], where nodes are assigned geographical tags
on three different levels of granularity (site, country, and
continent). SR paths between nodes that share a common
tag value (e.g., US for the country-tag) are restricted to only
use middlepoints with the same tag value (e.g., only nodes also
located in the US). This also implements the idea of limiting
the length of SR detours to a sensible maximum (e.g., by not
routing traffic between Boston and New York over Europe).

C. Demand Pinning

Another preprocessing technique briefly described by in
[17] and [18] is Demand Pinning (DP). It is based on
the observation that in many networks (i.e. WANs and ISP
backbones) traffic flows are not uniformly distributed in size.
Instead, traffic consist of a few very large demands that
make up a considerable amount of the total traffic volume
and a rather large number of very small demands. DP fixes
the forwarding paths of all these small demands to standard
Shortest Path Routing (SPR) and only runs a TE optimization
for the larger ones. The idea is that the impact of the small
demands on the overall solution quality is negligible compared
to the larger traffic flows. Not optimizing them will have
virtually no impact on the overall solution quality. To the best
of our knowledge, there are no studies on the performance
of the DP approach regarding its impact on solution quality
and computation time. However, in [17], it is mentioned that
around 68% of demands in the Microsoft WAN are of small
size, making up a combined total of only 1.3% of the total
traffic volume. If these results transfer to other networks,
as well, DP seems like a promising candidate for an SR
preprocessing since fixing the path of 68% of demands would
translate to an equal reduction in the number of SR paths to
consider during optimization.

D. SR Path Domination

All of the previous approaches carry the risk of excluding
SR paths that are needed for an optimal solution. As a
result, the solution quality can become arbitrarily worse when
deploying these methods. To prevent this, one has to ensure
to only exclude SR paths for which it can be proven that they
are not needed for an optimal solution. A first step towards
such an approach was presented in [4]. There, it is shown that
a large portion of configurable SR paths actually contain loop-
like structures and the authors suspect that many of these paths
are not required to obtain optimal solutions. This assumption
is further investigated and confirmed by Callebaut et al. [7].
They propose the concept of dominated and equivalent SR
paths. An SR path p1 is dominated by another path p2 if three
conditions are satisfied. First, both paths must have the same
start- and endpoint. Second, assuming a uniform traffic flow
is routed over each path, for each link l in the set L(p2) of



links used by p2 the load put on l by p2 must be lower or
equal to the load put on l by p1:

load(l, p2) 6 load(l, p1) ∀ l ∈ L(p2) (7)

Lastly, for at least one link in Equation 7 the strict inequality
must hold. Analogously, two SR paths are equivalent, if their
set of used links and the resulting link-loads are exactly
equal. This is the case if the first two conditions for SR path
domination hold but with exact equality for Equation 7.

Dominated SR paths are never needed for an optimal solu-
tion and for a set of equivalent paths, it is sufficient to consider
just one of them, allowing to exclude all others. It is shown in
[7] that, based on these two observations, a substantial number
of SR paths can be ruled out prior to optimization, resulting in
a significant reduction in computation time. Furthermore, just
like SB and centrality-based preprocessing approaches, this
just requires information on the network topology but not on
traffic. Hence, it can be precomputed in advance which is quite
useful since in [7], computation times of up to 30min or more
are reported for just the preprocessing of larger topologies.

E. Discussion

As described in the previous sections, there is a wide
variety of possible preprocessing approaches for SR. However,
judging and comparing the quality and usefulness of these
different approaches proves to be difficult. The reasons for
this are manifold: Meaningful cross comparisons between the
publications are virtually impossible as they all use (i) different
hardware as well as (ii) varying datasets. Furthermore, (iii)
basically all evaluations are carried out on (semi-)artificial
data, like the Repetita dataset which features topologies based
on real-world networks but related traffic matrices are fully
artificial (cf. Section IV-A). Even if full-on real-world data2

is used (e.g., from the Geant network in [23]), it is rather
old and mostly from research networks which do not feature
the same characteristics as large ISP backbones. Hence, it is
unclear whether the results obtained on such data are directly
transferable to a practical application in large commercial net-
works. (iv) While some works (e.g., [7]) feature an extensive
evaluation on a large set of different networks, others (e.g.,
[23] or [26]) only test their approaches on a very limited
number of networks (6 and 2, respectively). Even though their
results look promising, the sample size is probably far to low
to allow for a meaningful generalization of the results to other
networks. And lastly, (v) while some approaches (e.g., DP)
sound very promising in theory, there are no evaluation results
reported in the literature, at all.

We aim to address the above issues by carrying out an exten-
sive performance evaluation of all preprocessing approaches
on a large set of networks from the Repetita dataset as well
as recent network data from a globally operating Tier-1 ISP.

IV. EVALUATION SETUP

This section presents our evaluation setup by introducing
the used datasets and describing the respective algorithm

2Meaning topology and traffic data obtained from real operational networks.

implementations. All computations are carried out on the same
64-core 3.3GHz machine with around 500GB of RAM and
using CPLEX 20.1.0 [14] as LP-solver.

A. Data

We carry out our evaluation on two sets of data. The
first one consists of data from the publicly available Repetita
dataset [11]. It features topologies of real-world networks
(mostly WANs or ISP backbones) collected in the Internet
Topology Zoo [16] and artificially generated traffic matrices
(using a random gravity model [19]) for each topology. In
addition to that, each topology also comes with two sets of
IGP metrics (unary and inverse capacity). However, we limit
our evaluations to only the unary metric set as previous results
[22] have shown that the impact of different metric designs on
SR performance is negligible. Other results also indicate that
SR middlepoint selection approaches also seem to be quite
robust regarding the underlying metric (cf. e.g., [23]). We
further discard all instances already solved optimally by SPR.
Finally, since for smaller networks with just a couple tens of
nodes, even rather complex LPs are generally solvable within
seconds or less (cf. e.g., [5]), there is basically no practically
relevant improvement to achieve for these networks. Therefore,
we limit our evaluations to larger networks with at least 40
nodes. This leaves us with a total of 72 networks comprising
of 40 to 197 nodes and around 85 to 500 edges (cf. Table I).

Complementary to the Repetita data with artificial traffic, we
also carry out evaluations on a second set of data collected
from the backbone network of a globally operation Tier-1
ISP. It features 19 topology snapshots that resemble different
expansion states of the network between 2017 and 2021
and a real traffic-matrix collected during the peak-hour of
the respective day. Table I lists some further information
on the most important graph properties across the respective
topologies in each of the two dataset used in our evaluation.
Regarding the number of edges, parallel links are counted as
just one edge and the density characterizes the ratio of (non-
parallel) edges in the graph relative to a complete graph.

B. Algorithms & Implementations

We limit our evaluation of the centrality-based middlepoint
selection approaches to the GSP centrality as it was identified
as performing best in previous works (cf. Section III-A). To get
around the issues regarding the high algorithmic complexity
of its computation [26] (and the resulting high computation
times), we use an approximation algorithm provided by Net-
worKit3 which approximates the node group with maximum
centrality up to a given accuracy ε. Such an approximation
would (most likely) also be used in a practical deployment
due to the substantial performance gains. For our evaluations,
we use ε = 0.005 which allows to compute the respective
maximum centrality group in a couple of seconds for most
instances. We implement the SB approach as described in
Section III-B, with a small extension to address the already

3https://networkit.github.io/



Table I: Graph properties of the topologies in the two datasets used for evaluation.

Repetita (72 Topologies) ISP (19 Topologies)
min max avg stdDev min max avg stdDev

Nodes 40 197 68.69 31.81 108 186 143.11 29.90
Edges 86 486 171.94 77.31 660 1064 897.16 136.25
Density [%] 1.26 7.82 4.30 1.48 3.09 6.57 4.73 1.35
Diameter 4 35 11.79 7.57 6 8 7.32 0.58

described issues regarding demands with very low shortest
path lengths. For this, we allow each demand with a shortest
path length of just one hop to be rerouted over arbitrary paths
with two hops (irrespective of the chosen α-value). This turns
out to be sufficient to resolve most of the respective issues
without significantly increasing the overall number of SR paths
to consider during optimization. The same was also observed
in [7]. To implement DP, we first sort all traffic demands by
size in ascending order. After this, we keep fixing the smallest
demands to their SPR paths until the total sum of “fixed” traffic
reaches a certain share of the total traffic volume given by the
parameter αDP ∈ [0, 1].

Similar to the related work, we evaluate the effectiveness
of the preprocessing approaches based on the 2SR LP (Prob-
lem 1). It is the de-facto standard LP for SR TE and builds the
foundations for a wide body of derivative work (cf. Section II)
to which the findings should be transferable. Our evaluation
focuses on the resulting MLU deterioration and the achievable
speedup compared to the standard 2SR implementation.

V. EVALUATION RESULTS

In this section, we evaluate the performance of the various
middlepoint selection approaches presented in Section III. The
MLU deteriorations and the achievable speedup for different
parameterizations are depicted in Figure 1 and 2, respectively,
with individual subfigures for each approach. Orange boxplots
show the respective distributions for the Tier-1 ISP dataset and
blue boxplots for the Repetita dataset. In the context of the
following evaluation, the speedup factor is used to characterize
the performance improvements regarding computation time
achievable with the different preprocessing approaches. It is
calculated by dividing the computation time Tdefault required
by the default algorithm (without any preprocessing) by the
computation time of the same algorithm A when the respective
preprocessing approach p is applied beforehand (including the
computation time of the respective preprocessing):

SpeedupFactor(p,A) =
Tdefault(A)
T (p(A))

(8)

A. A Primer Regarding CPLEX-Related Outliers

In rare occasions, there can be outliers with a speedup factor
below one (e.g., in Figure 2c for αDP = 0.3 for the ISP
data). This means using the respective preprocessing approach
actually resulted in an increase in computation time. While
this is rather surprising at first thought, there is a rather simple
explanation for this phenomenon. LP-solvers like CPLEX stop
optimization only if they find a “proof” that the currently

best solution is truly optimal (or within a small margin to the
optimum). This optimality gap is computed by comparing the
currently best found solution against a lower bound for the
best possible objective value which is continuously updated
(increased) during optimization. If the gap between the lower
bound and the best found solution is sufficiently small, the
solution is considered to be optimal. By preemptively limiting
the allowed set of available SR paths, the rare scenario can
occur in which we prohibit a path that might not be required
for an optimal solution but that facilitates a quick proof of
optimality. There might be other options for such a proof but if
these are explored in a much later stage of the branch-and-cut
search, proving optimality and, thus, the whole optimization
process might take substantially longer. The same effect is also
responsible for the more noticeable “drop” of the achievable
speedup when going from 10 to a single digit number of
middlepoints for the ISP dataset in Figure 2a. Normally, over
all preprocessing approaches, the achievable speedup increases
when reducing the set of available SR paths. The same can
be observed here from 45 to just 10 available middlepoints.
However, when only allowing 9 or less middlepoints, the
speedup unexpectedly drops instead of increasing further. We
suspect that the reason for this is the exclusion of a node
(and, thus, an SR path) that enables a fast proof of optimality.
However, this node (or the related SR paths) do not seem to
have an impact on the solution quality as the MLUs for 9 and
10 middlepoints are basically identical (cf. Figure 1a).

While the possibility of actually degrading performance
when applying preprocessing approaches might be concerning,
there is a straight-forward solution. Increasing the allowed
optimality gap of CPLEX by only a small amount allows
for an easier proof of “optimality” (even without the paths
excluded by the preprocessing). In our experiments, increasing
the optimality gap from the default 10−4 to around 10−3

proved promising to resolve these issues without having a
practically relevant negative impact on the solution quality.
Solutions are still within 0.1% (instead of 0.01%) of the
optimum. In the context of practical deployments, such minute
differences are basically negligible since traffic, while mostly
being quite stable, is still subject to small ongoing variations.
Those (most likely) cover up such marginal MLU differences.

B. Centrality-based Middlepoint Selection

For the centrality-based middlepoint selection (Figures 1a
and 2a), it can be seen that allowing only a small set of nodes
as available middlepoints can result in a substantial (factor
10–20) speed-up in computation time. This, however, comes
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Figure 1: MLU deterioration for different preprocessing approaches. (A few very large outliers were cut off for better readability.)
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Figure 2: Achievable speedup for the 2SR optimization. (A few very large outliers were cut off for better readability.)

at the price of a significant deterioration of the overall solution
quality. In the worst cases, MLUs increase by up to 55%
for the ISP dataset and by more than 80% for the Repetita
instances. By increasing the number of allowed middlepoints,
these MLU deteriorations can be reduced but this also results
in an increase in computation time. Ultimately, operators have
to make an individual decision regarding the acceptable trade-
off between speedup and resulting MLU deterioration. This
might vary for different use cases, but from our experience,
the highest acceptable MLU deterioration for most scenarios
probably lies somewhere around 10-15%, at most. Based on
this, we highlight in each plot the parameter configuration that
produces the highest speedup while still allowing for, in our
experience, practically usable MLUs. For the Repetita data this
is around 25 middlepoints. For the ISP instances, the box and
whiskers are already below the 10% deterioration threshold
for just three middlepoints. However, since the dataset only
comprises 19 instances, the three “outliers” that (considerably)
surpass this threshold still make up over 15% of the dataset. To
improve the solution quality for these instances, substantially
higher numbers of middlepoints are needed (in the range of
25-45). Hence, we argue that the number of middlepoints
required to obtain practically usable solutions is (to some
extend) instance-dependent but, in general, at least 20 to
25 middlepoints seem to be required. This translates to an

average speedup factor of around 3-4 for the Repetita dataset
and 7-8 for the ISP backbone (cf. Figure 2a). It has to be
noted, however, that for these parameterizations there is still
a considerable number of instances with a significant MLU
deterioration left. Overall, our results generally confirm the
findings of [26]. Selecting only a few central nodes as available
middlepoints can substantially reduce computation times but
also results in significant deteriorations of the overall MLUs,
especially for small numbers of middlepoints.

C. Stretch-Bounding

In Figure 1b and 2b, it can be seen that, for the ISP dataset,
near optimal results are achieved with a SB factor of just
1.05. For a factor of 1.1, there is basically no noticeable
MLU deterioration anymore while still achieving a speedup
of factor 4 to 5. For the Repetita dataset, the results differ
noticeably. Here, such low SB factors result in a substantial
MLU deterioration of around 40% on average and over 80%
at max. Practically usable results can be achieved with a SB
factor of 1.5 or higher and (virtual) optimal results require a
factor of around 2.0. This translates to a speedup of around
factor 4.5 and factor 2, respectively.

At first glance, it might seem like the SB approach performs
substantially worse for the Repetita dataset. This observation,
however, is (at least a bit) deceptive. While, for low SB factors,
the MLU deterioration on the Repetita dataset is substantially



higher, the speedup is also much better. The reason for this is
that for the same SB factor, the overall number of prohibited
SR paths is much higher for the Repetita dataset. For example,
for a SB factor of 1.1, around 90% or more of all available SR
paths are prohibited for many Repetita instances. Contrary, for
the ISP data, only around 65-70% of paths are filtered out. As a
result, the optimization for the Repetita instances is faster due
to the lower number of options to evaluate, but this also results
in a worse overall solution quality. If we instead compare
results based on the percentage of excluded SR paths, they
become much more similar. For example, for a SB factor of
1.4, the percentage of excluded SR paths is also in the range of
65-70% and the resulting speedup is comparable to the one of
the ISP data with the respective “matching” SB factor of 1.1.
We suspect that these variations are a product of topological
differences between the instances in the Repetita dataset and
the real ISP backbone network. However, investigating and
identifying these differences is out of the scope of this work,
but remains an interesting question for future work.

D. Demand Pinning

Results for the DP approach are depicted in Figures 1c and
2c. It can be seen that for the ISP data, a speedup of around
factor 4.5 can be achieved without substantially worsening
the MLU. However, for larger α-values, the solution quality
deteriorates quickly. Results for the Repetita data look rather
different. Here, we are able to exclude up to 20% and more of
the total traffic volume before a relevant MLU deterioration
becomes observable. However, the speedup, while overall
slightly better than for the ISP data, remains rather similar
with a factor of around 5. The reason for those differences lies
in the distribution of the demand sizes in the traffic matrices
of the two datasets. The real ISP traffic features a substantially
higher number of really small demands (w.r.t. the total traffic)
than the artificially generated matrices in the Repetita dataset.
This is exemplarily depicted in Figure 3 for the largest instance
of the ISP and Repetita dataset, respectively. As a result, the
same α-value allows for the exclusion of substantially more
demands for the ISP network. An α-value of 0.01, for example,
excludes around 70-80% of all demands in the ISP matrices
from optimization, while only excluding around 15-20% of
demands from the Repetita matrices.

E. SR Path Domination

Figure 4 depicts the speedup that is achievable with the
SR path domination approach on our two datasets. Contrary
to the previous approaches, there is no need to look at MLU
deterioration since the main idea of the SR path domination
concept is to retain provable optimality of the achievable
MLUs. It can be seen that, for the Repetita data, computation
times can be improved by around a factor of four on most
instances with a couple of outliers even reaching close to factor
10. Those high outliers are a result of the special topology
structures of certain instances. For example, the Ulaknet
topology consists of three star shaped networks whose centers
are interconnected with each other. Basically all SR paths
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achieved by the SR path
domination preprocessing on
the two evaluation datasets.

using one of the many stub-nodes as intermediate segment
provide no TE benefit regarding the MLU and can be ignored.
This results in over 98% of all SR paths being excluded from
optimization. On more “realistically” shaped topologies (w.r.t.
common network design principles), however, this number
is much lower (mostly between 65-80%) and, hence, the
achievable speedup is also more moderate.

While the SR path domination preprocessing works quite
well for the Repetita data, this does not hold for the real-
world ISP network. Here, the average achievable speedup
factor is just around 1.5 and the maximum barely surpasses
factor 2. The reason for this, again, lies in the number of
SR paths that are ruled out for each respective dataset. For
the ISP dataset, this number is substantially lower with just
around 20% of the total number of SR paths compared to
an average of around 80% for most Repetita instances. We
do not have a definitive answer what causes this behavior
but we suspect that it is a result of topological differences
between the networks in the Repetita dataset and the real ISP
network. For example, the ISP network has virtually no stub-
nodes since a common design goal for modern networks is to
achieve at least two-connectivity for all nodes. This facilitates
reliability and robustness as it ensures that the network will not
be partitioned by single-link failures. Contrary, the Repetita
topologies feature a rather large number of stub-nodes. Since
those are never needed as middlepoints to obtain an optimal
solution, a larger number of stub nodes automatically results in
a larger number of dominated SR paths. This becomes visible
when removing all stub-nodes from the Repetita topologies
which reduces the number of excluded SR paths from around
80% on average to just 60%. For reasons of space, we cannot
delve deeper into this topic here and leave it for future work.

F. Discussion

All in all, we have seen that each preprocessing approach
has its pros and cons. Some perform better on the Repetita data
and some on the ISP data. Hence, there is no clear “winner”
to be picked but we hope that our extensive analysis facilitates
others in picking a suitable preprocessing approach for their
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Figure 5: MLU deterioration resulting from the combined preprocessing approach for different datasets and SR algorithms.
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Figure 6: Speedup achieved by the combined preprocessing approach for different datasets and SR algorithms.

applications. However, what became more and more clear
during our evaluation, is the fact that considerable differences
in results are observable depending on the dataset used. This
especially holds true for the SR path domination approach
that works really well for Repetita networks but considerably
worse for the real Tier-1 ISP backbone. We track this down
to differences in topology and traffic characteristics between
the two datasets. This reinforces our concerns regarding the
direct transferability of results obtained on the Repetita data
with artificial traffic to real networks, already expressed in
Section III-E. It also stresses the importance of also carrying
out evaluations on real, recent network data. Of course, our
ISP dataset is “just one datapoint” that does not allow to draw
definitive and universal conclusions but other recently reported
information e.g., regarding the demand size distribution in
the Microsoft network [17] is far closer to the ISP network
characteristics than to the Repetita data. To further investigate
this, it would be desirable to repeat our experiments on other
recent data from real networks. However, to the best of our
knowledge, there currently are no publicly available datasets
that provide such information.

VI. COMBINING PREPROCESSING APPROACHES TO
IMPROVE PERFORMANCE

As seen before, there is no definitive answer to what the
generally best preprocessing approach is since performance
varies between datasets. In this section we propose a concept

for combining multiple preprocessing approaches to allow
for a more consistent performance across all datasets and to
further improve the achievable speedup.4

A. Concept
Our approach is based on the observation that, until now, we

always considered each preprocessing approach individually.
However, they are not mutually exclusive. Therefore, it is pos-
sible to combine the different preprocessing approaches into a
single one. This can yield multiple benefits. First and foremost,
it holds the potential of further increasing the achievable
speedup. Combining the individual sets of excluded SR paths
allows to further increase the number of SR paths that can be
ignored during optimization. However, it is unclear whether
the combination of multiple exclusion sets that perform well
individually will result in a well performing union set, as
well. The combined set might also become too restrictive
and, hence, might result in substantial MLU deterioration.
Secondly, combining different preprocessing approaches might
also lead to a more “stable” performance across our two
datasets. In simple terms, by combining an approach that
works better on the ISP data (i.e., SB) with one that seems
more suited for the Repetita data (i.e., SR path domination), we
hope to leverage their individual benefits and get an algorithm
that performs well on both datasets.

4A conceptually related but less extensive (and, thus, less effective) ap-
proach is also considered in [7], showing promising preliminary results.



Table II: Computation times (in seconds) of the respective
ground truth algorithms without any preprocessing.

Min Max Median Average

2SR Repetita 4 5456 25 248
ISP 178 1407 691 611

SC2SR ISP 2477 14568 5604 6571

For our improved preprocessing algorithms, we combine
the three approaches of SB, DP and SR path domination.
The reason for not including the centrality-based approach is
that it generally performs worse than the other approaches
with regards to MLU deterioration and speedup. Furthermore,
as already discussed in Section III-A, it also features other
weaknesses when it comes to practical use (e.g., regarding la-
tency constraints). Our new combined preprocessing approach
starts with a DP operation that can be fine-tuned with the
αDP parameter. After this, a SB step is carried out using the
αSB parameter. The SR path domination filtering comes last
as it is the computationally most demanding operation. Having
already filtered out a large set of SR paths by the previous two
operations which do not need to be checked for domination
or equivalency anymore, facilitates lower computation times.

B. Evaluation

We evaluate the performance of our combined approach on
our two evaluation datasets for the 2SR algorithm. Addition-
ally, we also carry out a short exemplary evaluation for the
MO-capable SC2SR algorithm proposed in [2]. This is done
to provide an insight into whether results are transferable to
other SR TE algorithms even if those utilize a rather different
SR variation. The results regarding MLU deterioration and
speedup for various parameter combinations are depicted in
Figures 5 and 6, respectively. It can be seen that for the
Repetita dataset (Figures 5a and 6a), with the right parameter
configuration, we are able to achieve a 2SR speedup of around
factor 7 to 8 without a significant MLU deterioration. If a few
more outliers are acceptable, this factor can be increased even
further close to a ten-times speedup. The same applies to the
ISP dataset for both the 2SR (Figures 5b and 6b) and the MO-
capable SC2SR algorithm (Figures 5c and 6c). This confirms
that the new preprocessing approach performs (more or less)
equally good across both datasets when the right parameters
are chosen. Furthermore, it also shows that the preprocessing
is transferable to other SR optimization algorithms. It achieves
comparable results regarding MLU deterioration and speedup,
even if the underlying SR concept is inherently different.

To put into perspective what a speedup of around factor 10
actually means, some information on the computation times
of the ground-truth algorithms (without any preprocessing) are
given in Table II. It can be seen that, for example, the SC2SR
algorithm takes around two hours to compute, on average,
and over four hours at max. With our preprocessing, this
can be reduced to just around 10 or 20 minutes, respectively.
The benefits of our preprocessing become even more apparent
when looking at the 2SR algorithm. Here, our preprocessing is

able to reduce the average computation time from 10min and
more, to less than 2min for most of the ISP instances. This
easily allows for the use of LP-based optimization for use
cases where network configuration is continuously adapted on
a timescale of just a few minutes (cf. e.g., [13]). Furthermore,
we are now advancing into computation time regions in which
it can be argued that the 2SR algorithm could even be used
for tactical TE that allows to quickly react to failures or
traffic shifts [3]. Finally, we also believe that the performance
achieved with our preprocessing approach is reasonably close
to what can actually be achieved with preprocessing in general.
The reason for this are its extremely high numbers of excluded
SR paths. For the 2SR algorithm, our preprocessing already
rules out 97-99% of all theoretically configurable 2SR paths.
This probably does not leave much room for further improve-
ment since a certain number of options to choose from is
required before solution quality starts to degrade substantially.

VII. DISCUSSION

In our study, we only consider SR using at most two
node segments per path. While it has been shown that this
is sufficient to obtain virtually optimal solutions in many
practical use cases [1], [20], there also are scenarios in which
higher order segment paths or the use of adjacency segments
can be necessary. We argue that the performance gains achiev-
able with preprocessing approaches for such algorithms are
probably even higher than those observed by us regarding 2SR.
The reasoning for this is as follows. While adjacency segments
or a general higher number of segments can be required to
facilitate the implementation of certain forwarding paths that
cannot be build with 2SR, this number is relatively small
in most scenarios. Most of the newly considered paths can
already be implemented with 2SR or do not have any practical
value (i.e. looping paths that visit a segment multiple times).
Thus, increasing the number of segments generally also results
in an increase in the ratio of “useless to useful” paths, which, in
turn, improves the effectiveness of preprocessing approaches.
This has also been reported by Callebaut et al. [7]. They
show that the number of dominated SR paths grows from only
50% when using 2SR to around 90% and 97% for 3SR and
4SR, respectively. Thus, without having explicitly considered
higher order segment paths or adjacency segments in our study,
the performance improvements shown here should resemble a
lower bound for what can be achieved for those, as well.

Furthermore, our study (and other publications on the topic
of SR preprocessing) only consider the performance benefits
achievable for LP-based approaches, since those notoriously
suffer from scalability issues, negatively impacting their us-
ability for large networks. However, the observation that large
portions of SR paths can be ignored during optimization
without considerably worsening the achievable solution quality
could also find applications in other contexts. Tactical TE,
for example, focuses on the computation of reasonably good
TE configurations within very strict time constraints in order
to facilitate fast reconfiguration in the presence of failures
or other critical events. The ability to preemptively limit the



explored solution space with preprocessing approaches looks
promising to further speed up such heuristic computations as
well, especially since optimality of a solution is not strictly
required anyway, as long as it is able to resolve the critical
events. However, this would probably require faster and more
efficient preprocessing approaches since, for the largest net-
works, our combined preprocessing takes around a minute to
compute. In the context of LP-based optimization that, without
the preprocessing, can take multiple hours, this is well worth
it. However, in the context of tactical TE where solutions
have to be computed within seconds or at most a couple of
minutes, spending a considerable amount of time on just the
preprocessing is probably not feasible. Here, faster and more
efficient preprocessing approaches are needed.

VIII. CONCLUSION

In this paper, we conducted the first large scale comparative
study of existing preprocessing (or middlepoint selection) ap-
proaches for SR. For this, we not only used publicly available
data from the Repetita dataset, but also real network data
from a globally operating Tier-1 ISP. Based on the insights
gained from this study, we proposed a combination of multiple
preprocessing approaches to further improve performance.
With this approach, the number of 2SR paths to consider for
optimization can often be preemptively reduced by as much
as 97-99%, while still obtaining close to optimal solutions.
This lowers the computation times of different LP-based TE
algorithms by a factor of 10 or more without a significant
deterioration in solution quality. This represents a major im-
provement over the current state-of-the-art and facilitates the
reliable use of LP-based TE in large segment-routed networks.

Similar to the literature, we focused on performance gains
for LP-based algorithms in this paper. However, preprocessing
approaches could also provide benefits in other contexts, as
well. On of those being heuristic algorithms often used for
fast, tactical TE [3], [10] where low computations times are
crucially important. Here, preemptively limiting the explored
solution space by excluding a large set of (non beneficial) SR
paths, holds the potential to facilitate major performance gains.
However, this most likely requires faster and more efficient
ways to compute the respective preprocessing in order to keep
up with the tight time constraints. We plan to look into this
in the future.
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