
©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The definitive version of
this paper is published in the Proc. of IEEE LCN 2023. DOI: https://doi.org/10.1109/LCN58197.2023.10223378

Combining Midpoint Optimization and
Conventional End-to-End Segment Routing

for Traffic Engineering
Alexander Brundiers◦, Timmy Schüller•◦, Nils Aschenbruck◦

◦Osnabrück University, Institute of Computer Science •Deutsche Telekom Technik GmbH
Friedrich-Janssen-Str. 1, 49076 Osnabrück, Germany Gartenstraße 217, 48147 Münster, Germany
Email: {brundiers, schueller, aschenbruck}@uos.de Email: timmy.schueller@telekom.de

Abstract—A recent innovation in the context of Segment
Routing (SR) Traffic Engineering (TE) is the use of the Midpoint
Optimization (MO) concept to substantially reduce the number
of SR policies required to implement TE solutions. However,
these benefits come at the price of a potential deterioration of
traffic steering capabilities as the individual, per-demand traffic
control of end-to-end (E2E) SR is lost. In this paper, we show
that a hybrid SR approach utilizing both MO as well as E2E
SR allows to combine the individual benefits of both approaches.
It results in improved TE capabilities and, thus, enables better
TE solutions. Besides discussing this with theoretical examples,
we also confirm our findings in an extensive evaluation on real-
world network topologies. For this, we propose a TE algorithm
based on the hybrid SR approach and show that it outperforms
state-of-the-art algorithms that rely solely on MO or E2E SR.
Furthermore, we demonstrate that the hybrid SR approach is
also suitable for the use-case of time-constrained, tactical TE.

I. INTRODUCTION

Over the recent years, Segment Routing (SR) [6] has
become a premier tool for Traffic Engineering (TE) as it offers
great traffic steering capabilities while introducing very little
overhead into the network. Most of the SR literature focuses
on the use of conventional SR which deploys SR policies
as end-to-end (E2E) tunnels to alter the forwarding paths of
individual demands. Recently, however, Brundiers et al. [3]
studied the benefits of applying the Midpoint Optimization
(MO) concept to SR TE. Instead of using SR policies in an
E2E fashion, MO allows for a single policy to route multiple
demands at once. It was shown that such an approach can
substantially reduce the number of SR policies required to
implement TE solutions while still achieving optimization
quality that is on-par with conventional E2E SR algorithms.

In this paper, we show that there are scenarios in which
neither of these two approaches (MO and E2E SR) alone
are sufficient to find the best possible TE solutions, both
with respect to the number of policies but also the achievable
Maximum Link Utilization (MLU). To overcome these issues,
we utilize a hybrid SR approach which can deploy both MO as
well as E2E policies. It allows to utilize the per-demand traffic
control of E2E SR while relying on MO to reduce the overall
number of policies, which allows for better TE solutions. We
verify our theoretical findings with an extensive evaluation on
real-world network topologies. For this, we develop the first

TE algorithm that utilizes a hybrid SR approach and show
that it outperforms state-of-the-art algorithms that solely rely
on either MO or E2E SR. We further show that the hybrid
SR approach is also suitable for fast, tactical TE and allows
for the computation of very good solutions within seconds.

The remainder of the paper is structured as follows. First,
we introduce required background information on the topic
of SR and TE (Section II), followed by a discussion of
related work (Section III). After this, Section IV describes
the general concept of the hybrid SR approach and illustrates
its advantages by means of a small example. This is followed
by the introduction of our new Linear Program (LP)-based
optimization algorithm (Section V) and the evaluation of the
latter (Section VI). In Section VII, we demonstrate that the
hybrid SR approach is also suitable for the use-case of time-
constrained, tactical TE. Finally, the paper is concluded in
Section VIII with a recapitulation of our key contributions
and findings and a short discussion of possible future work.

II. BACKGROUND

This section provides background knowledge on concepts
fundamental for the understanding of this paper. This includes
Segment Routing (SR), its use for Traffic Engineering (TE)
and the concept of Midpoint Optimization (MO) for SR.

A. Segment Routing

Segment Routing (SR) [6], [7] is a network tunneling
technique. It implements the source routing paradigm by
adding a list of labels (so called segments) to a packet, which
determines the packets path through the network. These labels
can be interpreted as waypoints that have to be visited in
the given order before forwarding the packet to its original
destination. To determine the forwarding paths between these
waypoints, the Interior Gateway Protocol (IGP) is consulted.
Labels are applied to packets by configuring so called SR
policies on individual nodes in the network. These policies
can be understood as a form of “rules” that specify which
labels to add to which packets on this specific node. Such
policies are generally used in a demand-bound, E2E fashion.
For a traffic demand between two nodes A and B, a dedicated
policy is installed on node A that specifies the forwarding

path for this demand. However, traffic of demands with other
sources that also traverse A and head towards B will not be
routed along the TE path specified in this policy. Instead, it
will follow the standard shortest path. This enables a fine-
grained traffic control on the level of individual demands
and the definition of virtually arbitrary forwarding paths,
comparable to other established traffic steering approaches
like Multiprotocol Label Switching (MPLS) with Resource
Reservation Protocol (RSVP)-TE [1]. However, SR introduces
lower overhead and, hence, scales better than the latter.

B. Traffic Engineering with Segment Routing

Its fine grained traffic control combined with a reduced
overhead have rendered SR one of the premier choices for TE
over the recent years. As a result, there is a wide variety of
publications dealing with SR and its applications for various
TE purposes (for an overview see e.g., [16]).

One of the first works that deals with SR TE is [2]. It
proposes a LP-based optimization approach for computing
optimal SR configurations with respect to the MLU. While, in
theory, arbitrarily many segments can be applied to a packet,
in practice this number is limited by the so called Maximum
Segment Depth (MSD) of the used hard- and software. For
this reason, the algorithm proposed in [2] is limited to SR
paths with at most two segments (one intermediate one and
one for the destination). Hence, it is also referred to as
2SR. It has been shown in [2] that even when using at
most two segments, virtually optimal MLUs can be achieved.
However, those results are of a more theoretical nature since
the respective SR configurations do not adhere to various
other real-world requirements and, thus, are generally not
deployable in practice. For example, current routing hardware
does not allow for traffic to be split into arbitrary fractions.
Furthermore, the computed solutions often require thousands
of SR policies to be implemented, while operators prefer
solutions with as few policies as possible (i.e. to reduce
overhead or for the sake of clarity and maintainability). This
is addressed in [14] in which the original 2SR formulation is
extended to also include those real-world requirements. It is
shown that the resulting 2TLE algorithm is still able to obtain
virtually optimal results on real-world instances.

C. Midpoint Optimization for Segment Routing

A recently studied innovation in the context of SR is the
concept of Midpoint Optimization (MO) [3]. Instead of using
SR policies as E2E “tunnels” for single demands, MO builds
onto the idea of allowing a single policy to route multiple
demands. This holds the potential to substantially reduce the
number of policies to be configured, resulting in reduced
overhead and improved clarity and maintainability. MO itself
is an abstract concept that can be implemented in various
ways, depending on the chosen rule-set on how traffic is
steered onto policies. The MO implementation studied in [3],
for example, is based on the IGP Shortcut approach. A packet
is only steered onto a policy if the policy endpoint lies on the
IGP shortest path from the policy startpoint to the packets

destination, offering some sort of “shortcut”. Furthermore,
traffic that is currently detoured by a policy is not steered onto
other policies encountered along this detour. This implicitly
prevents the accidental configuration of forwarding loops [3].

A popular first approach to TE problems is formulating
them as LPs (cf. e.g., [2] or [14]). Those can be used to find
provably optimal solutions that allow to assess the overall
potential of the new TE concepts. In the context of MO,
however, such an approach proves to be difficult (cf. [3]).
The main problem is that, for an efficient LP formulation,
information on how the insertion (or removal) of policies
impacts the link utilizations in the network is needed. For E2E
SR, this information can be efficiently precomputed as each
policy routes exactly one demand in an E2E fashion. When
utilizing MO, however, policies are no longer bound to a
specific demand and, hence, can route a multitude of demands.
Furthermore, since policies are no longer installed in an E2E
fashion, a demand can be routed sequentially through multiple
policies, one after the other. This results in what is defined
as policy dependencies in [3]: The addition or removal of
a policy can (potentially) influence the traffic that is routed
through other policies in the network. An example for this
is given in Figure 1. If only the orange policy is installed at
node C (the colored node marks the respective intermediate
segment), the traffic of demand A→ D will be routed through
it. However, if the green policy is installed on node B as well,
the traffic will be routed through it instead. As a result of
these dependencies, the impact of an individual policy can no
longer be determined independently of the other policies. In
the worst case, information on (virtually) all other policies in
the network can be necessary to determine the link utilizations
resulting from a policy. This renders the efficient calculation
of such an LP formulation virtually impossible [3].

To (at least partially) circumvent this problem, [3] proposes
the idea of prohibiting the simultaneous configuration of SR
policies that “influence each other”, to facilitate an efficient
LP formulation. This artificially limits the solution space and,
thus, can (theoretically) deteriorate the quality of the solutions
found. However, it is shown in [3] that the Shortcut 2SR
(SC2SR) algorithm that utilizes this idea is still able to achieve
optimization results of similar quality as conventional E2E SR
while requiring substantially less policies to do so.

Since the optimization algorithm proposed later on in this
paper reuses parts of the SC2SR algorithm, the latter one is
vital for the understanding of this paper. Hence, the respective
LP is given in Problem 1. The binary xlkm variables denote
whether an MO policy is between nodes k and m with
intermediate segment l. For the sake of a smaller and, thus,
faster solvable LP (cf. [3]) a second set of variables is
introduced. These ykm basically aggregate the respective xlkm
for nodes k and m and indicate whether a policy is installed
between these nodes, irrespective of the intermediate segment.
With Equation 2, the ykm are tied to their respective xlkm.
It also limits the number of policies between any pair of
nodes to at most one. The second constraint (Equation 3)
ensures that for any installed policy none of its influencing

A DB C

MO E

F G

(a) Demand A→ D is routed through the orange policy.

A DB

MO

C

MO E

F G

(b) If the green policy is additionally installed, traffic from
demand A→ D no longer enters the orange policy.

Figure 1: Simplified example for policy dependency
when deploying MO-capable SR policies.

min θ (1)

s.t.
∑
l

xlkm = ykm ∀km (2)

ykm + yij ≤ 1
∀km
∀ij ∈ Ikm

(3)

spr(e) +
∑
ij

tij
∑
klm

diff klm
ij (e)xlkm ≤ θ c(e) ∀e (4)

xlkm ∈ {0, 1} ∀klm (5)
ykm ∈ {0, 1} ∀km (6)

Problem 1: SC2SR formulation [3].

policies will be installed as well. Equation 4 is the capacity
constraint. It ensures that, for each edge e, the load put on
this edge does not exceed θ times its capacity, with θ, again,
resembling the overall MLU that has to be minimized. Here,
spr(e) corresponds to the amount of traffic that is put on
edge e in the standard Shortest Path Routing (SPR) case
without any policies installed. From this “default” value, we
then add or subtract the traffic differences that arise from
the configured policies. The diff klm

ij (e) values indicate the
difference (compared to SPR) in the traffic share of demand
i→ j that is put on edge e when a policy between k and m
over intermediate segment l is installed.

For policy minimization, a two-step Tunnel Limit Exten-
sion (TLE) approach like the one proposed in [14] can be
used. It first minimizes the MLU with the LP of Problem 1
and then carries out a second optimization step that minimizes
the number of policies required to obtain this MLU. For this
second step, the objective function is changed to

min
∑
km

ykm (7)

and the following constraint is added to the LP to limit the
MLU deterioration of the newly computed solution.

θ ≤ λθ′ (8)

It ensures that the MLU θ of the new solution does not surpass
the optimal MLU θ′ of the preceding MLU optimization step
by more than the user-defined trade-off coefficient λ. The
resulting algorithm is then called SC2TLE [3].

III. RELATED WORK

MO for SR is a very recent innovation with the already
mentioned study of Brundiers et al. [3], published in 2022,
being the first scientific paper on this topic. It formally
describes the general concept of MO for SR and discusses
its advantages and disadvantages compared to conventional
SR. Furthermore, the already mentioned SC2SR algorithm
(cf. Problem 1) is proposed. The only other paper that deals
with MO for SR is [4]. It studies the applicability of MO
for the context of tactical TE (i.e. fast reoptimization in

failure scenarios). A Local Search (LS)-based heuristic called
Midpoint Optimization Local Search (MOLS) is proposed and
it is shown that, within very limited time, it is able to find
solutions that are on-par with tactical TE algorithms that rely
on conventional SR but require substantially less policies.

The idea to allow for the activation of the IGP Shortcut
feature on individual nodes instead of all routers to realize
some form of hybrid TE approach is not completely new. In
the MPLS context, there are IGP Shortcut implementations
from large routing manufacturers for which the functionality
can be activated on a per-node basis (cf. e.g., [10], [13]). For
SR itself, we were not able to find information on this in the
respective documentations. However, even if this functionality
does not exist (yet), we believe that it could be implemented in
the foreseeable future. Especially, since one way to implement
SR in practice is based on MPLS, potentially allowing for a
reuse of the existing MPLS feature implementation. However,
while the technical foundations for a per-node activation of
the IGP Shortcut feature (more or less) already exist, there are,
to the best of our knowledge, no scientific publications that
deal with such an approach in the context of TE or evaluate
its optimization capabilities. Hence, this paper is the first to
deal with an hybrid approach between conventional E2E SR
and MO and also the first one to propose and evaluated a
corresponding optimization algorithm.

IV. A HYBRID APPROACH BETWEEN MO AND E2E SR
One of the key benefits of MO compared to conventional

E2E SR is its ability to substantially reduce the number of SR
policies required to implement TE solutions. The downside
of this approach, however, is that it gives up the individual,
per-demand traffic control of E2E SR, impacting its overall
TE capabilities (cf. [3]). Strictly speaking, there is, in fact,
no loss of routing expressiveness when using MO instead of
E2E SR. To mimic the per-demand traffic control of E2E SR,
we can simply deploy a (more or less) “full-mesh” policy
configuration in which a MO policy is configured between
each pair of nodes in the network. As a result, each demand
will be steered onto a dedicated policy between its source and
destination. This is necessary to guarantee that the paths of

A

B

C

HD

MO

E

G

F

(a) The desired routing cannot be fully
implemented when exclusively using MO or
E2E policies and policy configuration on A,
B, and C is prohibited.

A

B

C

HD E

G

F

(b) If policy configuration is allowed on
all nodes, using either exclusively MO or
E2E policies still results in a total of four
policies.

A

B

C

HD

E2E

E

MO

G

F

(c) A hybrid use of E2E and MO policies
requires just two policies and avoids policies
on A, B, or C.

Figure 2: Example scenario for which a hybrid use of MO and E2E policies is necessary to implement the desired routing under
the assumption that the configuration of SR policies is prohibited on certain nodes (A, B, and C). Even if policy configuration
on those nodes is allowed, the hybrid approach is able to further reduce the number of required policies.

demands that should be forwarded along their normal shortest
path are not influenced by other MO policies along the way.
This basically means that it is not only required to install
policies for demands that should be detoured, but also for
those that should not, to ensure the latter are following their
standard shortest path. At this point, it has to be remembered
that policy number minimization is one of the main reasons
for deploying MO, in the first place. Hence, relying on a
full-mesh configuration, which basically requires the highest
possible number of policies (O(|V |2)), is not really feasible in
practice. Therefore, MO might (theoretically) offer the same
traffic steering capabilities as E2E SR but this does not carry
over into practice where the number of policies is a limiting
factor as well. As a result, solely relying on MO can lead to
sub-optimal solutions in the same way as using only E2E SR.

Therefore, we propose the use of a hybrid SR approach,
similar to those that already exist for MPLS (cf. Section III).
Each node can be individually configured to either interpret
SR policies as MO or E2E policies. Such an approach allows
to utilize the per-demand traffic control of E2E SR wherever
necessary while also benefiting from the ability of MO to
substantially reduce policy numbers. This can further reduce
the number of policies required to implement TE solutions
compared to a deployment that uses either only MO or E2E
SR. Furthermore, there are practical scenarios in which SR
policies can only be configured on a subset of nodes (c.f.,
[3] or [5]). In this case, there are routings and even optimal
solutions that can only be implemented with hybrid SR.

The example in Figure 2 illustrates the benefits of the
hybrid SR approach. Given the depicted topology with a
simple hop-count metric, traffic has to be routed from each of
the nodes A, B, C, and D to node H . However, to adhere to a
given TE objective, traffic from A, B, and C has to be routed
over G and traffic from D over F . We further assume that it is
not possible to configure SR policies of any kind on A, B, and
C. Under those assumptions, the desired routing cannot be
implemented when exclusively relying on either E2E or MO
policies. This is illustrated in Figure 2a. To detour the traffic
from A, B, and C, we need to install an MO-capable policy
either on D (as depicted) or, alternatively, on E. However,
the traffic from D also has to pass over both of these nodes

and shares the same destination. Thus, it would also be steered
into the respective policy, following the same path. As a result,
only one of the desired detours can be implemented (either for
traffic from A, B, and C or for traffic from D), but not both.
Hence, under the given circumstances, the desired routing is
not feasible using either exclusively MO or E2E policies.

This changes, if we allow policies to be installed on all
nodes. In this scenario, a possible solution with the minimal
number of policies requires four policies: [A,B,C] → G →
H and D → F → H (cf. Figure 2a). Here, we cannot use
MO to detour multiple demands with a single policy as each
MO policy that would be applicable for traffic from A, B,
and C would also be applicable for traffic originating at D
(as explained in detail in the previous paragraph). As a result,
all four demands will always be steered along the same path,
which is not a valid solution. For this scenario, there is, in fact,
no real difference between using MO or E2E policies. Even
when technically using MO-capable policies, each of them
only routes exactly one traffic flow. As a result, we need as
many policies as there are demands to be rerouted, which is
sub-optimal regarding the number of installed policies.

Both of the above issues can be resolved when deploying
the hybrid SR approach as it allows for a solution that
requires less than four policies and does not require the
installation of policies on nodes A, B, or C. The respective
hybrid configuration is depicted in Figure 2c. It requires
an E2E policy D → F → H and an MO-capable policy
E → G → H . The first one is responsible for detouring the
demand between D and H . Since it is an E2E policy, it does
not affect traffic coming from other nodes. As a result, traffic
from A, B, and C can pass over D without being detoured and
will be steered onto the MO-capable policy on node E that
routes it over node G to H . All in all, this example shows that
a hybrid SR approach can 1) reduce the number of policies
compared to an exclusive use of either MO or E2E SR and
2) can actually be necessary to implement a desired routing
if there are nodes on which policies cannot be installed.

V. LP-BASED OPTIMIZATION ALGORITHM

Since the “pure” MO problem is a sub-problem of the
hybrid SR optimization scenario, the latter one also suffers

min θ (9)

s.t.
∑
l

xlkm = ykm ∀km (10)∑
l

ul
km = vkm ∀km (11)

zk + vkm ≤ 1 ∀km (12)
ykm ≤ zk ∀km (13)

ykm + yij ≤ 1 ∀km ∀ij ∈ Ikm (14)
vkm + yij ≤ 1 ∀km ∀ij ∈ Jkm (15)

spr(e) +
∑
ij

tij

(∑
klm

diff klm
ij (e)xlkm +

∑
k

(gkij(e)− fij(e))uk
ij

)
≤ θ c(e) ∀e (16)

zk ∈ {0, 1} ∀k (17)
ykm , vkm ∈ {0, 1} ∀km (18)

xlkm , ul
km ∈ {0, 1} ∀klm (19)

Problem 2: Hybrid 2SR (H2SR) formulation.

from the policy dependency issues explained in Section II-C.
For this reason, finding an efficient LP formulation is equally
difficult here. However, it was shown in [3] that prohibiting
the configuration of influencing policies enables an efficient
LP formulation while still finding (virtually) optimal solutions
in most cases. Thus, we decided to follow a similar approach.

The LP formulation of our hybrid optimization algorithm
called H2SR is given in Problem 2. First and foremost, we
need a way to distinguish between nodes which use conven-
tional SR and those for which the MO (or IGP Shortcut)
functionality is activated. This is done with the binary zk
variables. For each node k, those indicate whether the MO
feature is activated (zk = 1) or deactivated (zk = 0). Like in
the SC2SR LP, the xlkm and ykm variables indicate whether
an MO-capable policy is configured on node k with node m
as endpoint (and node l as intermediate segment). Equations
10 and 14 are also identical to those of SC2SR and fulfill the
same purposes (cf. Section II-C). Analogously, the ulkm and
vkm indicate whether an E2E SR policy is installed on node
k towards node m (via intermediate segment l) and Equation
11 connects the u and v variables in the same fashion as
Equation 10 does for the x and y variables. Equations 12
and 13 ensure that if a node is set to “MO-mode” only MO-
capable policies are configured on it and vice versa for the
conventional SR case. When utilizing the hybrid SR approach,
traffic routed through an MO policy cannot only be influenced
by other MO policies but also by E2E policies that prevent
a demand from entering it. Thus, we do not only need a
constraint ensuring that for each installed policy none of its
influencing MO policies is installed (Equation 14), but also
one that does the same for influencing E2E policies. This
is done with Equation 15 where the set Jkm contains all
those start- and endpoints of E2E policies that influence the
traffic that is routed through MO policies between nodes k
and m. Similar to the Ikm, these sets can be precomputed in

advance. Lastly, Equation 16 realizes the capacity constraint
and, together with the objective function, is responsible for
minimizing the MLU. This constraint is similar to the one
used in Problem 1. However, it now also includes the traffic
loads resulting from E2E policies. These are included by
the second sum within the large parentheses. Here, fij(e)
corresponds to the share of demand i → j that is put on
edge e when it is routed via SPR. Analogously, the gkij(e)
resemble the respective share of traffic if demand i → j is
routed through an E2E policy with intermediate segment k.
Hence, the second sum in the large parentheses adds, for each
E2E policy, the respective difference to the SPR case to the
link utilization, similar to the diff klm

ij values for the MO case.
To not only optimize the MLU but also minimize the

number of policies required to implement the optimal con-
figuration, we utilize the TLE concept which is also used in
the 2TLE and SC2TLE algorithms (cf. Section II-C). After
minimizing the MLU with Problem 2, a second optimization
step is carried out which minimizes the number of policies
required to obtain this MLU. The second step uses an adapted
version of Problem 2. Equation 8 is added to the LP to
ensure that the MLU calculated in the first optimization
step is not exceeded by more than a user-defined margin λ.
Additionally, the objective is changed from MLU to policy
number minimization by replacing the objective function with
the following one:

min
∑
km

ykm + vkm (20)

The final, two-stage algorithm is then called H2TLE.
Regarding complexity, the bottleneck of the H2SR algo-

rithm and its H2TLE extension lies in the capacity constraint
(Equation 16). It summarizes over O(N5) variables and has to
be set up for every edge in the network (potentially O(N2)),
resulting in an overall complexity of O(N7) with N being
the number of nodes in the network. However, it has to

be remembered that this is the worst-case complexity. Real-
world problem instances often feature certain topology and
traffic characteristics that can be exploited to substantially
lower the problem size. For example, ISP backbones tend to
have a fairly low graph density, nowhere near the worst case
O(N2) edges, and often there isn’t a traffic demand for every
single node pair. Furthermore, not all theoretically feasible
intermediate segments need to be considered to guarantee
optimal solutions. This can be exploited to further reduce the
problem size, resulting in a substantially lower complexity for
real-world instances.

VI. EVALUATION

In this section, we evaluate the performance of our H2TLE
algorithm to assess whether the theoretical benefits of the
hybrid SR approach described in Section IV carry over into
practice. For this, we use it to optimize real-world network
topologies and compare these results to state-of-the-art TE
algorithms that solely rely on either MO or E2E SR.

A. Data and Setup
Our evaluations are carried out on instances from the pub-

licly available Repetita dataset [8]. It is based on real-world
network topologies (mostly of WANs and/or ISP backbones)
collected in the Internet Topology Zoo [11] (ranging from
just 4 to up to 197 nodes in size) for which five artificially
generated traffic matrices are given. There are two sets of
metrics for each topology: One with unary metrics and one
with the metric corresponding to the inverse capacity of the
respective link. For reasons of time and space, we limit our
evaluations to one traffic matrix per instance (matrix set 0)
with unary metrics. We do not expect the results to differ
significantly for the inverse capacity metrics since it has been
shown in [15] that, as long as a sensible metric is selected, the
results obtainable with SR are rather independent of the exact
metric choice. Furthermore, we exclude all those instances for
which the optimal MLU is already achieved with SPR as they
are of no interest for TE. This leaves us with a total of 209
instances, which we further categorize by their number of
nodes, dividing them into three categories: small (|V | < 20),
medium (20 ≤ |V | < 40), and large (40 ≤ |V |).

For each instance, we use the 2TLE algorithm to compute
the optimal MLU obtainable with E2E 2SR as well as the
minimal required number of policies. The same is done with
the SC2TLE algorithm for MO. These results are then used
as references to compare our new hybrid SR approach against
and to assess its optimization capabilities and its potential to
improve upon those established SR TE approaches. For the
assessment of the following results, it should also be noted
that all Repetita instances are designed to have a theoretically
achievable optimal MLU of 0.9 (or 90%). All computations
are carried out on a node with two AMD EPYC 7452 CPUs
and 512GB of RAM. LPs are solved with CPLEX [9].

B. Results
The MLUs achieved by the different optimization algo-

rithms are depicted in Figure 3. The dashed green line marks

small medium large

2TLE
H2TLE

SC2TLE
2TLE

H2TLE

SC2TLE
2TLE

H2TLE

SC2TLE

Dataset & Algorithm

1.0

1.2

1.4

1.6

M
ax

im
u

m
L

in
k

U
ti

li
za

ti
o
n

Figure 3: Comparison of the achievable MLUs of LP-based
optimization algorithms based on the three different SR con-
cepts: E2E (2TLE), MO (SC2TLE), and the hybrid approach
(H2TLE). (Five outlier instances with very high SC2TLE
MLUs are not included in the plot to improve readability.)

the optimal MLU of 0.9. It can be seen that while SC2TLE
solves the major part of instances more or less optimally,
there is also a noticeable number of (especially small and
medium sized) instances that leave room for improvements.
For nearly all of the latter instances, 2TLE and H2TLE are
able to find optimal solutions. Since H2TLE is guaranteed to
find solutions that are at least as good as those of 2TLE and
SC2TLE it is no surprise that it performs on the same level as
2TLE. However, the fact that the MLU distributions of 2TLE
and H2TLE are virtually identical indicates that there is no
additional benefit from combining MO and E2E in terms of
MLU (at least for the considered instances).

Such a benefit, however, can be seen when looking at
the number of policies required to implement the respective
solutions (Figure 4a). Even though H2TLE achieves the same
MLUs as 2TLE, it requires less policies to do so. For the small
instances, the differences are neglectable as most instances
are solved with less than 10 policies which does not leave
much room for improvements. However, already for mediums
sized instances, on average, 2TLE tends to require more than
twice as many policies as H2TLE. For the large instances,
the differences become even more noticeable. Here, 2TLE
often requires hundred or more policies and in worst case
scenarios even up to around a thousand. In contrast, H2TLE
achieves the same MLUs with substantially fewer policies,
mostly within the range of a low two-digit number of policies.

An observation that might seem odd at first glance is the
fact that, in Figure 4a, the number of policies required by
SC2TLE are even lower than the ones of H2TLE. However,
the solution space of the former algorithm is a subset of
the solution space of the latter. Thus, all solutions found by
SC2TLE should also be available to the H2TLE algorithm.
The straight forward explanation for this observation is the
fact that we carry out a (more or less) unfair comparison
here. As shown in Figure 3, H2TLE tends to find better MLUs

small medium large

2TLE
H2TLE

SC2TLE
2TLE

H2TLE

SC2TLE
2TLE

H2TLE

SC2TLE

Dataset & Algorithm

0

1000

2000

3000

4000

N
u

m
b

er
of

P
o
li

ci
es

100

101

102

103

(a) Distribution of the number of policies required to implement
the solutions depicted in Figure 3. For better readability, the inset
plot shows the same data but on a logarithmic scale.

small medium large
H2T

LE

SC2T
LE

H2T
LE

SC2T
LE

H2T
LE

SC2T
LE

Dataset & Algorithm

0

20

40

60

80

100

N
u

m
b

er
of

P
o
li

ci
es

(b) Distribution of policy numbers when using the same MLU target
values for H2TLE and SC2TLE.

Figure 4: Comparison of the number of policies required by the different LP-based optimization algorithms.

than SC2TLE for quite a large set of instances, and solutions
with better MLUs generally tend to require more policies to
implement. Hence, for a fair comparison, it is necessary to
compare the number of policies required by both algorithms
to implement solutions of similar quality (with equal MLU).
We carried out such an evaluation by running the H2TLE
optimization with an MLU target value corresponding to the
best MLU found by SC2TLE for the respective instance. As
soon as H2TLE finds a solution with an equally good or
better MLU, it will not try to further reduce the MLU but
switch to the policy minimization instead. The results of this
optimization are depicted in Figure 4b. It can be seen that,
when solutions of similar quality (wrt. MLU) are compared,
H2TLE requires even less policies than SC2TLE.

All in all, these findings demonstrate that our theoretical
considerations from Section IV actually carry over into prac-
tice. Deploying the hybrid SR approach further improves TE
capabilities, resulting in improved solution quality regarding
both MLU as well as policy numbers. If required, conven-
tional E2E SR enables individual, per-flow traffic control
while the the use of MO allows for a substantial reduction
in the number of policies. In fact, the finding that H2TLE
requires even less policies than SC2TLE shows that the hybrid
SR approach is not just the “sum of its two parts” but that the
combination of both approaches yields additional benefits.

VII. TACTICAL TRAFFIC ENGINEERING WITH HYBRID SR

As shown in the previous Section, a hybrid SR approach
can be used to further improve TE capabilities and, thus,
quality of TE solutions. While the obtained results undeniably
demonstrate the benefits of the hybrid SR approach, the
H2TLE algorithm itself suffers from an inherent weakness.
It is an LP-based algorithm and as such it does not scale
well with increasing network size. The larger the network,

small medium large

2TLE
H2TLE

SC2TLE
2TLE

H2TLE

SC2TLE
2TLE

H2TLE

SC2TLE

Dataset & Algorithm

100

102

104

106
C

om
p

u
ta

ti
on

T
im

e
[s

]

Figure 5: Computation times required by the different LP-
based algorithms to compute the results presented in Figure 3.
(Optimization of some (mostly larger) instances was aborted
before finding a provable optimal solution if no further
progress in solution quality was observable.)

the larger and more complex the related LP and the more
memory and computation time is required for optimization.
For small to medium sized instances, this is not really an
issue as those instances can still (mostly) be solved within
minutes or even seconds (cf. Figure 5). However, for very
large networks this quickly becomes problematic. For exam-
ple, for the second largest topology in the Repetita dataset
(UsCarrier), H2TLE took multiple days to compute and
for the largest instance (Cogentco) it was not able to find
a solution on our hardware. Such high computation times
are not-optimal but (arguably) tolerable if the use case is
strategic TE that is done in a planned fashion on a weekly or
even monthly basis. However, they are definitely not suitable
for tactical TE. For this, it is of utmost importance to find

sufficient solutions within short time (e.g., to quickly react to
failures or sudden changes in traffic characteristics) [12].

Since fast, tactical TE is often as important to network
operators as strategic TE, we want to demonstrate that the
hybrid SR approach is also suitable for this use case. For
this, we extended the LS-based MOLS algorithm proposed in
[4], which previously just supported pure SR-MO, to utilize
the hybrid SR approach instead and evaluate its performance.
The resulting algorithm is called Hybrid SR LS (HSLS).

A. Adaption of the MOLS Algorithm

Since our HSLS algorithm is an extension of the MOLS
algorithm of Brundiers et al. [4], it follows the same structure
and reuses parts of the latter algorithm. For reasons of space,
we cannot describe all these functionalities of the MOLS
algorithm in detail here. Therefore, this section focuses
mainly on changes and adaptions made by us to the original
MOLS algorithm in order to support the hybrid SR approach.
All other algorithmic components not mentioned here were
basically left untouched and are implemented and used as
described in [4]. For a more in-depth description of the MOLS
algorithm (and, thus, also our HSLS adaption), we refer to [4].

In order to adapt the MOLS algorithm to support the
hybrid SR approach, we had to make two major changes.
The first difference is the representation of the solutions. In
the MOLS algorithm, a solution is represented by the set of
installed policies. To support the hybrid SR approach, this
representation has to be extended to also feature information
on the mode of each node in the network (either MO or
E2E). This is done with a boolean array that, for each node,
indicates whether it is set to MO-mode (which means all
policies installed on it will be MO policies) or not. As
the second major change, we also had to adapt the set of
eligible moves and the respective candidate/move evaluation
procedure. As MOLS relies solely on MO, it has basically
just two types of moves: Insertion and removal of a MO
policy. When utilizing hybrid SR, we also have the option
to add (or remove) E2E policies. Furthermore, there also has
to be the option to change the mode of nodes, either from
MO to E2E or vice versa. We combine this mode change
with the insertion of policies. As a result, HSLS features four
different insertion options: Insertion of a MO or E2E policy
either on a node that already is in the respective mode or
needs to be changed accordingly. Insertions in which a mode
change is not required are rather straight forward. For an MO
insertion, we can reuse the implementation of MOLS and the
insertion of an E2E policy only requires the rerouting of a
single demand. Insertions that also require a mode change,
however, are inherently more complex, since it also alters
the behavior of all other policies configured on this node.
Hence, we do not only have to recompute the paths (and
resulting link utilizations) of demands that are impacted by
the newly inserted policy, but also of all those demands that
are (or were) impacted by the other policies on this node.
Fortunately, we can apply a similar approach to what is
proposed in [4] in order to reduce the complexity of this

small medium large

H2TLE
HSLS

H2TLE
HSLS

H2TLE
HSLS

Dataset & Algorithm

0.90

0.95

1.00

1.05

M
a
x
im

u
m

L
in

k
U

ti
li
za

ti
on

Figure 6: Distribution of the MLUs achieved by HSLS in
comparison to those achieved by H2TLE. The dashed green
line marks the theoretical optimal MLU. (Six outlier instances
with very high MLUs are excluded to improve readability.)

procedure. It is not required to reroute demands all the way
from their source to their destination. Instead, we can limit
computations to the subpath starting at the node where the
policy is installed and ending at the demands destination.
This also allows for demands that share the same destination
to be grouped and rerouted together. For example, instead
of individually rerouting all demands towards destination X ,
we can simply sum up their traffic into a single, “merged
demand”‘ for which the new forwarding path towards X has
to be computed only once. Overall, this reduces the number
of potential path recomputations per move from O(N2) to
just O(N), resulting in a substantial computation speed-up.

B. Evaluation

To assess the overall optimization quality of our HSLS
algorithm, we compare the achieved MLUs to those computed
with our H2TLE algorithm. HSLS is run with a time limit of
two minutes. Since it features non-deterministic components,
we also repeat each experiment five times and average the
results across these five runs. The results are shown in Figure
6, once as a whole and once with a zoomed view for better
readability. It can be seen that, for the small and medium sized
instances, HSLS finds solutions of virtually the same quality
as the H2TLE algorithm. For some of the larger instances,
results are slightly worse than those of H2TLE. However,
those differences are rather small (mostly within 1–3%) and
still very close to the theoretical optimum. When interpreting
these results, it has to be remembered that H2TLE can
require multiple hours to compute while HSLS finds solutions
mostly within seconds. In the context of tactical TE, such
minor deteriorations of MLUs in exchange for a substantial
reduction in computation time are perfectly acceptable.

Furthermore, we also look at the ability of HSLS to remove
congestion in a network and the time required to do so, as
this is one of the most important use cases of tactical TE

small medium large
MOLS HSLS MOLS HSLS MOLS HSLS

Dataset & Algorithm

10−1

100

101

102

O
p

ti
m

za
ti

on
T

im
e

[s
]

Figure 7: Log-scale distribution of the optimization times
required by HSLS to remove congestion compared to MOLS.

(cf. [4]). To better assess the quality of the results, we also
compare them to those of the MOLS algorithm. Again, we use
a time-limit of two minutes and each experiment is repeated
five times. Overall, HSLS is able to remove congestion for
187 of the 190 instances (98.4%). This is slightly better than
MOLS which only removes congestion for 185 instances. The
optimization times required to remove congestion are depicted
in Figure 7, with the dashed blue line marking the sub-second
threshold and the dashed red line denoting the two minute
time-limit. All instances for which congestion could not be
removed within this limit are placed on the latter line. It can
be seen that for small and medium sized instances, HSLS
tends to be slightly faster than MOLS, probably because it
can also utilize E2E policies which provides it with more
options for a single move. However, this comes at a price
regarding complexity that becomes visible for the larger
instances. Here, HSLS is slower than MOLS because in each
iteration, we do not only need to check MO moves but
also E2E moves and mode switches, as well. While, for the
smaller instances, this increased complexity is compensated
by the improved expressiveness, it starts to dominate for
larger networks resulting in an increase in runtime. However,
the overall optimization times of HSLS are still very close
to those of MOLS and perfectly suitable for tactical TE as
congestion can still be removed mostly in sub-second fashion.

For reasons of space, we cannot conduct a more in-depth
evaluation of the HSLS algorithm here. However, the shown
results should function as a proof-of-concept that shows that
the hybrid SR approach can also be used for fast, tactical TE
within limited time constraints and can even improve on the
current state-of-the-art in certain aspects.

VIII. CONCLUSION

In this paper, we studied the benefits of utilizing a hybrid
SR approach for TE purposes. We have shown that there are
TE scenarios in which relying solely on either MO or E2E
SR is not sufficient to find optimal solutions. However, when
combining both approaches and allowing for the configuration
of MO as well as E2E policies, we are able to harness their
individual benefits and further improve the quality of TE

solutions. This is not only shown at theoretical examples
but also confirmed with an extensive analysis on real-world
network topologies. It shows that, by utilizing the hybrid
SR approach, our proposed H2TLE algorithm is able to
outperform comparable state-of-the-art TE algorithms that
solely rely on either MO or E2E SR. Furthermore, we have
shown that it is possible to develop a fast, heuristic algorithm
to facilitate tactical TE based on the hybrid SR approach and
that this algorithm performs on-par with current state-of-the-
art algorithms that rely solely on MO. As future work, we
plan to evaluate our HSLS algorithm in different scenarios
and use cases related to the objective of tactical TE (i.e., fast
reconfiguration in case of traffic changes and different failure
scenarios). In addition to that, we also want to extend our hy-
brid SR algorithms to support further real-world requirements
like latency-bounds or other service-related constraints.

REFERENCES

[1] D. O. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow,
“RSVP-TE: Extensions to RSVP for LSP Tunnels,” RFC Editor, RFC
3209, 2001.

[2] R. Bhatia, F. Hao, M. Kodialam, and T. V. Lakshman, “Optimized
Network Traffic Engineering using Segment Routing,” in Proc. of the
IEEE Int. Conf. on Computer Communications (INFOCOM), 2015, pp.
657–665.

[3] A. Brundiers, T. Schüller, and N. Aschenbruck, “Midpoint Optimization
for Segment Routing,” in Proc. of the IEEE Int. Conf. on Computer
Communications (INFOCOM), 2022, pp. 1579–1588.

[4] ——, “Tactical Traffic Engineering with Segment Routing Midpoint
Optimization,” in Proc. of the IFIP Netw. Conf. (NETWORKING), 2023.

[5] A. Cianfrani, M. Listanti, and M. Polverini, “Incremental Deployment
of Segment Routing Into an ISP Network: A Traffic Engineering
Perspective,” IEEE/ACM Transactions on Networking, vol. 25, pp.
3146–3160, 2017.

[6] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois,
“The Segment Routing Architecture,” in Proc. of the IEEE Global
Communications Conf. (GLOBECOM), 2015.

[7] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and
R. Shakir, “Segment Routing Architecture ,” RFC Editor, RFC 8402,
2018.

[8] S. Gay, P. Schaus, and S. Vissicchio, “REPETITA: Repeatable Experi-
ments for Performance Evaluation of Traffic-Engineering Algorithms,”
ArXiv e-prints, 2017.

[9] IBM, “IBM ILOG CPLEX Optimization Studio 20.1.0,” https://www.
ibm.com/docs/en/icos/20.1.0, 2020.

[10] Juniper Networks. Junos OS - Enabling IGP Shortcuts. [Online].
Available: https://www.juniper.net/documentation/en US/junos/topics/
concept/mpls-igp-enabling-shortcuts.html

[11] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet Topology Zoo,” IEEE Journal on Selected Areas in
Communications, vol. 29, no. 9, pp. 1765–1775, 2011.

[12] T. Li, C. Barth, A. Smith, and B. Wen, “Tactical Traffic Engineering
(TTE),” Internet Draft draft-li-rtgwg-tte-00, 2023.

[13] Nokia, “7X50 Advanced Configuration Guide,” Tech. Rep., 2015.
[Online]. Available: https://documentation.nokia.com/html/0 add-h-f/
93-0267-HTML/7X50 Advanced Configuration Guide/

[14] T. Schüller, N. Aschenbruck, M. Chimani, M. Horneffer, and S. Schnit-
ter, “Traffic Engineering using Segment Routing and Considering
Requirements of a Carrier IP Network,” IEEE/ACM Transactions on
Networking, vol. 26, pp. 1851–1864, 2018.

[15] T. Schüller, N. Aschenbruck, M. Chimani, and M. Horneffer, “On the
Practical Irrelevance of Metrics on Segment Routing Traffic Engineer-
ing optimization,” in Proc. of the IEEE Conf. on Local Computer
Networks (LCN), 2018, pp. 640–647.

[16] P. L. Ventre, S. Salsano, M. Polverini, A. Cianfrani, A. Abdelsalam,
C. Filsfils, P. Camarillo, and F. Clad, “Segment Routing: A Com-
prehensive Survey of Research Activities, Standardization Efforts, and
Implementation Results,” IEEE Communications Surveys & Tutorials,
vol. 23, no. 1, pp. 182–221, 2021.

